
International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

An Efficient and Simplest Algorithm for Intelligent
Comments Generation of the Input Code that is

in High Level Language
Syed Hussain Abid, Huma Ayub Vine

Abstract— Coding and development is the core phase in software development life cycle (SDLC) of software engineering (SE). This phase

involves transformation of hypothetical logic into concrete logical program by using any programming language. Every student of technical

education has to do specific programming at some level of his pedagogical or technical career due to the transferal of every related activity

on computer framework. Getting started with coding is a bit challenging due to the use of high level languages such as C++. I t is even

harder if you have to understand and alter the code of someone else .We propose a system that will generate comments on a pre-written

code and will provide an ease to the beginners and high techs in understanding that pre-written code if the one has to alter a pre-written

code. This system will be a great help for those who want to study coding by visualizing exemplary codes as our system will generate a

report in human understandable language.

Index Terms— it includes Software Engineering (SE), SDLC, High Level Language, Parsing, Algorithm, Artificial Intelligence and Neural

Networks.

——————————  ——————————

1 INTRODUCTION

nformation Technology (IT) is playing an essential role in
the encroachments of this world. It is an affirmed reality

and widely acknowledged that new development in this
world is not possible without the aid of computer. A nation’s
ability to solve problems and initiate and sustain economic
growth

Depends partly on its capabilities in science, technology,
and innovation [6].Keeping this in view every institution is
enhancing their researches in the field of IT to offer their con-
tributions in the progress and prosperity of humanity. Soft-
ware has its fundamental share in this progress. Students of
engineering learn many high level languages by which prob-
lems can be solved logically by writing program in the learnt
high level languages. Many languages like C++, Java, C#, py-
thon and many other are used for this purpose. Beginners of a
programming language face a lot of difficulty in understand-
ing the Syntax and semantics of programming language as it is
an excepted reality that “it takes 10 years for a novice to be-
come an expert programmer” [2]. This subject is quite critical
and cannot be understood without a teacher's assistance be-
cause if a novice has a code that he has to understand than he
might face much problem in understanding that code snippet.
It would be a great help for him if he has some handouts or
notes regarding the logic he is trying to understand.

————————————————

 Syed Hussain Abid is currently pursuing MS degree program in Software
Engineering in University of Engineering and Technology, Taxila, Pakistan,
PH: 92-331-5548669.
E-mail: hussainabid99@yahoo.com

 Huma Ayub Vine is currently teaching in masters degree program in Software
Engineering in University of Engineering and Technology, Taxila, Pakistan,
E-mail: huma.ayub@uettaxila.edu.pk

We purpose a comment generating system that will gener-

ate description about every line of input code. This system will
generate handout notes which will have description in human
readable language of every line i.e. every code line following
its description.This system will generate intelligent description
that will not merely increase the readability of the code but
also will be a great assistance to understand the logic of code
written in high level language with the help of description
generated in natu-ral language in this way it can be a great
help for beginners.This system will not only be a help for be-
ginners but will also support the transformation of a high level
language into a natural language at all levels and will be a
great asset for technical document generation. Software do-
cumentation is a critical document that acts as a communica-
tion medium between members of development team and a
high proportion of Software cost is incurred in documentation
[7]. This system will facilitate a user in the following ways:

 User can input a program in the given area and enter.

 Software system will generate comments in front of
each line of code (Fig.1).

User can also print a well formatted report in which com-
ments will be placed after each line (Fig. 2).

2 PRACTICAL CONSIDERATIONS

Generating description in natural language primarily require
the high level language to be parsed. One thing that we assure
before parsing is that the code entered for generating its do-
cumentation is syntactically and semantically correct because
we are not making or merging compiler in our system to cor-
rect errors. Parsing the given code means to convert it into
tokens, Tokens are the small meaning full chunks of any lan-
guage [4]. Tokenization is useful both in linguistics (where it is

I

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

a form of text segmentation), and in computer science, where
it forms part of lexical analysis [3]. If the language under con-
sideration is C++ and the given code and Tokens created by
parser will be like:

Parser will generate a to-
kenized array which will be
used in the comment genera-
tion of the input code. The
logic we are using for this purpose is expected token logic. For
this purpose Parse tree diagrams will be used.A concrete syn-
tax tree or parse tree or parsing tree [1] is an ordered, rooted
tree that represents the syntactic structure of a string accord-
ing to some formal grammar.Parse tree diagrams are tools that
are used to see the possible tokens after a given token. Ex-
pected tokens are specific to every language and they can be
used to generate algorithm for comment generation of the in-
put code

2.1 SAMPLE EXAMPLES

We will have 2 examples of parse tree diagrams which will
elaborate the use of these in generating descriptions.

2.1.1 Example # 1

This example is a parse tree diagram of a scenario if the en-
countered token is a Data type name. C++ has various data
types like int, float, char, double and so on. Their general parse
tree diagram covering all scenarios is in Fig.1.

This Figure illustrates that what are the possibilities when a
Data type is encountered. For example if I have “int” data
type, following statements can be expected which are covered
in the tree diagram:

 int var1;
 int var1, var2, var3,…….varN;
 int var1=2;
 int var1=20, var2=24;
 int FunctionName(Arguments…..)
 int arr1[10];
 int arrMulti[2][3];
 And so on.

2.1.2 Example # 2

This example illuminates the parse tree diagram of an
Arithmetic operation. C++ has many arithmetic operators like
+, -, *, /, %, ++, += and so on. In the parse tree diagram each
notation is used as a separate token. A general parse tree
diagram of the whole scenario in which operator is
encountered is in Fig.2. If the operator encountered is a “+”
following cases van be there:

 Operand = Operand + Number;

 Operand = Operand + Operand;

 Operand++;

 ++Operand;

 Operand += Number;

Tokens

)

include {

< int

iostream.h a

> =

void 10

main ;

(}

include <iostream.h>
void main()
{
int a=10;
}

FIG. 1 PARSE TREE DIAGRAM OF DATA TYPE

FIG. 2 PARSE TREE DIAGRAM OF OPERATORS LIKE ―+‖

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2.2 GENERALIZED ALGORITHM

As already explicated, algorithm will follow the expected to-
ken logic. We are tracing the expected token with the help of
parse tree diagrams. When any token is encountered it is
searched and small chunks are added to it to give a meaning
full sentence. The small chunks or phrases will be taken refer-
ring to some authorized book of that programming language
for instance C++ i.e. Programming Fundamentals [5].This ge-
neralized algorithm is:

String Sentence=”NULL”;
token_array [] =GetTokenizedArray (InputCode);
For i= start token_array. Length ()
Start
If (token_array [i] = = Keyword)
 Start
 If (token_array [i + n] = = ExpectedToken)
 Start
Sentence + = “This” + token_array [i] + “is using”
 token_array [i + n] + “for this purpose”;
i = i + n;
 End If
 If (token_array [i + n] = = ExpectedToken)
 Start
//Multiple Ifs can be there for all expected tokens//
 End If
 End If
End For
Print (Sentence);
Sentence.Empty ();

When a Keyword is encountered, the algorithm will inves-
tigate between all scenarios of the keyword and take action
according to the expected token found. It will look for all the
expected tokens and a final generalized statement will be ob-
tained after considering all cases.

2.3 INTELLIGENT ALGORITHM

This algorithm can be made intelligent by using a dictionary
of the encountered tokens after keywords. In this case algo-
rithm will always search within the dictionary and will take
actions accordingly. We can illustrate by a simple example of
Classes.

If a code has multiple classes class A and class B and both
invoke some functions. How can algorithm know that which
functions is of which class? For this we have to maintain some
dictionary which will contain the name of class and the func-
tions it have. So when ever any function is invoked, the algo-
rithm will also provide information that it is the function of
which class. In this way it will be able to generate more effec-
tive descriptions.

2.4 COMPLEXITY ANALYSIS

Selection of algorithm is considered an important factor for
achieving maximum throughput and minimum run time for

executing task. For finding complexity of any algorithm, the
main goal behind it is to achieve a function which gives the
efficiency of the algorithm in the form of the data measures
which is to be processed by algorithm. Time complexity is
another factor which describes the amount of time an algo-
rithm takes in terms of the amount of input to the algorithm
[9]. Basically it calculates the number of memory accesses,
comparisons between statements, amount of time inner loop
execution and execution time taken by set of elementary
statements into account.

Sometimes Space complexity function is also considered
which describes the amount of memory (space) an algorithm
takes in terms of the amount of input to the algorithm [9]. In
many cases the space complexity is ignored because the space
has minimal effect but sometime this effect cannot be ignored.

Concerning with our proposed commenting based algo-
rithm approach, the time complexity of this algorithm is calcu-
lated and it is found that the best case analysis of this algo-
rithm is Ω(n) and worst case analysis is O(n), which is linear in
time complexity.

3 SAMPLE DESIGN

We have implemented this algorithm and prolific results were
obtained. In Fig. 3 the software generated comments against
every line of code is shown while Fig. 4 shows the handout
generated by software.

4 FUTURE WORK

This algorithm can be enhanced using artificial intelligence
and neural networks which can result in more intelligent de-
tail of the input code. Intelligent detail will increase the under-
satnding of the code any will be a great support toll for novice
programmers.

FIG. 3 THE SOFTWARE GENERATED COMMENTS AGAINST EVERY LINE OF CODE

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

5 CONCLUSION

This system is a great help for novices and if used can reduce
confusion level and discrepancy between conceptual and
theoretical knowledge of beginners. It can be a great asset in
software engineering documentation because “ Software engi-
neering is not to produce a working software system only, but
also documents such as system design, user manual, and so
on” [8].

ACKNOWLEDGMENT

I (Syed Hussain Abid) surely want to acknowledge Assisstant
Professor Huma Ayub Vine for her precious time she devoted
for doing the complexity analysis of the algorithm.

REFERENCES

[1] http://en.wikipedia.org/wiki/Parse_tree#cite_ref-0.

[2] Soloway, E. & Spohrer, J. (1989). Studying the Novice Programmer,
Lawrence Erlbaum Associates, Hillsdale, New Jersey. 497 p.

[3] Huang, C., Simon, P., Hsieh, S., & Prevot, L. (2007).Rethinking
Chinese Word Segmentation: Tokenization, Character Classification,

or Word break Identification.

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, 2007, Compilers Principles

Techniques and Tools, New Delhi, Pearson Education, ISBN: 978-81-
317-2101-8.

[5] Robert Lafore, Object Oriented Programming in C++, 3rd edition.

[6] Acharya, T., A.S. Daar, and P. Singer. 2003. Biotechnology and the

U.N. Millennium Development Goals, Nature Biotechnology
21(12):1434–36.

[7] Sommerville, I. 2009. Software Engineering, 6th Edition. Harlow, UK:

London: Pearson Education Ltd.
[8] R. Pressman, 2010, Software Engineering – A Practitioner’s Approach

(7
th
Edition), McGraw Hill.

[9] http://www.cs.utexas.edu/users/djimenez/utsa/cs1723/lecture2.html

FIG. 4 HANDOUTS GENERATED BY THE SOFTWARE SHOWING EACH LINE OF

CODE FOLLOWED BY THE COMMENT.

http://en.wikipedia.org/wiki/Parse_tree#cite_ref-0
http://www.cs.utexas.edu/users/djimenez/utsa/cs1723/lecture2.html

